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Extract: 
3D cameras are becoming more widespread, but RGB-D video proves difficult to compress. 
We compare three lossless depth video compression techniques against Aivero’s 3DQ 
compression. 
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Executive Summary 
 
Since the release of the first Kinect camera for Microsoft’s Xbox in 2010, researchers and 
industry alike have made use of the additional dimension of 3D video to simplify, improve 
and extend vision solutions in a wide range of industries. 
 
Advances in compute power and the availability of public clouds, have enabled ever more 
powerful machine vision solutions.  
However, challenges posed by 3D video such as  

- novel data formats defying existing video compression, 
- non-unified 3D camera interfaces and 
- ever-increasing resolution and framerate are limiting the scalability of machine vision 

for 3D video. 
 
This report analyses three widely used lossless (Lz4, PNG and RVL) and two relevant lossy 
compression schemes for depth data. Then we present Aivero’s proprietary depth 
compression solution, 3DQ. 
 
This document first provides background into 3D data, then we describe the main challenges 
of 3D video compression and the most commonly used approaches before presenting our 
solution - 3DQ. Finally, we study the performance of these solutions across open datasets 
and present a short discussion about the results. 
  
Our results show that 3DQ offers a flexible depth compression solution that can be catered 
to specific applications and setup, being able to achieve very high compression ratios while 
maintaining image quality. 
 
Finally, Aivero’s 3DQ based RGBD Toolkit for 3D video capturing, streaming, and storage is 
presented. 
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Introduction 
 
Since the release of the first Kinect camera for Microsoft’s Xbox in 2010, the use of depth 
data for machine vision applications has been on a steady climb. Researchers and industry 
alike made use of the additional dimension in video data to simplify, improve and extend 
vision solutions in industry areas ranging from gaming, robotics, smartphone user 
authentication, medical analysis, augmented reality, warehouse handling to autonomous 
navigation. 
 
In recent years many new 3D cameras have hit the market, deploying a range of techniques 
to capture the depth components. The term depth imaging covers a range of technologies 
and approaches to measure distance such as LIDAR, stereoscopic imaging or stereo 
triangulation, time of flight, and structured lighting, synonyms are range imaging and 3D 
imaging. Closely related are volumetric video and point clouds. 

 

  

(a) Azure Kinect (b) Intel Realsense D415 

Depth images produced by different depth sensors 

 
Machine vision applications have historically been focused on analysing individual images, 
rather than a time series of images such as a video. Advances in computing power are now 
allowing to analyse individual frames at high frame rates or take real-time decisions based 
on changes in a time series of images.  
 
Despite the increase in computing power, a major bottleneck of 3D machine vision is the 
data rate associated with RGB-D video streams of ever-increasing resolution and frame rate. 
Conventional 2D video compression has effectively tackled this issue and continues to 
improve. 3D video, however, has not sufficiently benefited from this development due to the 
differences in data formats, the ever-increasing list of new data formats, and simply the 
novelty of the technology and the market. 
 
Most state-of-the-art depth data compression solutions entail lossless compression schemes 
due to the inability of conventional lossy compression methods to address the abrupt depth 
discontinuities usually present in these types of images, introducing compression artefacts 
that do not accurately portray the real-world geometry.  
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However, recently, some efforts have been made into using conventional lossy video 
encoders to compress depth data, by resorting to different colour encoding schemes and 
trying to apply some image processing techniques to reduce the compression artefacts 
issues. 
 
This paper aims to illuminate the bandwidth bottleneck associated with depth image 
compression and transport, study the commonly used technologies for compression of depth 
video, based on multiple defined metrics, and present Aivero’s proprietary depth image lossy 
compression codec, 3DQ. 
 
In addition, this document presents Aivero’s 3D video streaming toolkit that enables anyone 
to quickly have access to storage, transport, and machine vision solutions for multiple 
connected 3D cameras. 

Background 
In this section, we provide some background into 3D data acquisition and representation, 
main compression challenges and commonly used compression techniques. 

3D Data acquisition and representation 
A depth or 3D camera measures the distance between the camera and the subject and 
captures this information as an image with a given resolution in x and y. In RGB-D cameras, 
the 3rd dimension is often referred to as the z-axis, pointing out of the camera objective 
towards the subject. 
 
Different depth cameras capture depth using different techniques. A complete explanation of 
the approaches is beyond the scope of this paper. Widely available cameras use the 
following technology: 

● Kinect v1 to Azure Kinect use Time of Flight or TOF 
● Intel RealSense L515 uses a LIDAR 
● Intel RealSense D400 series, Stereolabs’ ZED use stereo triangulation 
● Zivid uses structured lighting 

 
TOF and LIDAR measure the time taken for a light signal from the camera to reach the 
subject and return to the camera. Based on the speed of light the distance to the subject is 
calculated. 
 
Stereo triangulation relies on two cameras, mounted a known distance from each other, that 
capture the same subject. By finding the same feature in both the left and right images one 
can triangulate the distance to the object. 
 
Structured lighting projects a known pattern onto the subject and observes the distortion of 
the pattern to calculate the distance and surface orientation of the subject. 
 
Depth cameras usually provide both a depth stream, as well as a visual stream such as 
colour or near-infrared (RGB-D). Access to these sets of frames is most often done through 
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a camera-specific SDK, which makes it a lot of work to interface with different cameras. The 
SDKs each provide a different format for storing and loading recordings from their cameras.  
 

● Intel RealSense uses the .bag format adapted from the Robot Operating System and 
applies LZ4 compression on this.  

● Azure Kinect uses the Matroska container format. They compress the colour stream 
only, with M-JPEG. 

● Stereolabs / ZED uses a proprietary format called SVO, which appears to contain left 
and right camera video streams, as well as metadata. 

 
What all 3D cameras and their SDKs have in common is that they will give the user access 
to a depth map. A depth map is a 2D image where every single pixel represents the 
distance from the camera to the point on the object that is being imaged.  
 
A depth map most often encodes the depth data as Z16 or unsigned int of 16 bit. 
This format uses a single channel, 16-bit value to encode the distance from the camera to 
object for every pixel. The data can be visualised as a grayscale image where near to far 
pixels are shown from black to white, respectively.  
 
To make it easier for humans to understand the image, the depth map is often coloured in 
using a rainbow style progression of colours. We call this a colourised depth map. Each 
step in value represents a fixed distance in the real world. The unit of this step is depending 
on the camera and needs to be negotiated separately. By default, the Intel RealSense 
cameras, for example, use 1mm as the unit. With 16-bits this allows for representing 
distances up to 65535mm or ~ 65.5m away, with value 0 being an invalid pixel. However, the 
actual maximum distance of depth data recovered greatly depends on the camera, the 
technology being used, and the overall scene texture. 
 

 

Colourised depth map using a JET colourisation showing the Aivero mug. 
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Many 3D cameras will additionally capture near-infrared or colour data and often provide 
additional metadata to allow mapping colour data onto the depth map. This combination of 
colour and depth data is often called RGB-D. 

 

Colour image of the Aivero mug. 
 

Virtually all 3D cameras will produce a depth map before converting the data to point cloud. 
A point cloud is an unordered list of occupied space in 3D, sometimes with attached colour 
information. It can be computed from a depth map by projecting the pixels into a 3D volume 
using the intrinsics of the camera used for capturing the data. Basically, by reversing the 
path the light travelled from the object to the sensor of the camera, we can compute the 
location in the real world that is represented by the pixel - the point. Doing this for every point 
in a depth map results in a list of points, called a point cloud. 

 

Rendering of a point cloud showing a floating Aivero mug. 

Since point clouds contain unstructured data that is localised in 3D, one can easily combine 
data from multiple cameras and render it from different viewpoints. Given that the geometric 
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relationship between the different cameras is known, the points produced by the individual 
cameras can be plotted in a common frame of reference. 
 
Cameras operating in the visible light (colour) usually record 3 channels in 8 bit: 
R, G, B for red, green, and blue. Each channel contains values that can be between 0 and 
255. How the mapping of colours to the real world is done is out of scope for this paper, but 
you can read up about the Gamut for that. With the availability of “HDR” displays more and 
more content is available that uses 10-bit or even 12-bit per channel and can represent 
values up to 1023 and 4096, respectively. This makes the colours `pop` and appear more 
realistic. 
 
State of the art in RGB-D cameras records depth data at 1280 by 720p. The colour stream, 
however, is already being captured with 4k: 3840 by 2160 pixels, which are 9 times more 
pixels. With 8k on the horizon, in the future compression will be even more relevant than 
today. 

Raw Bandwidth Study 
Capturing raw uncompressed images produces, both for the 2D and 3D cases, a great 
amount of data. Due to this limitation, the RAW format is not usually used for data transport. 
 
The following table contains some example formats, namely RGB colour, GRAY16 depth 
and point cloud according to the pcd format, that should help to gain some insight into the 
bandwidth cost of the RAW format. You can check the calculations for these values 
appended to this document. 

 

 Typical 
representation 

Bytes-per-pixel Size per frame 
(1280*720p) 

Bandwidth at 30 
FPS 

Colour (RGB) 3 channels @ 
8-bit 

3 2.8 MB 664 Mbit/s 

Depth 
(GRAY16) 

1 channel @ 
16-bit 

2 1.8 MB 442 Mbit/s 

Point Cloud 
(pcd) 

4 channels at 
32-bit 

16 14.7 MB 3539 Mbit/s 

 
Raw data sizes using different formats. 

Challenges of 3D video compression 
Luckily, there is a plenitude of codecs available to compress video data. Widely used are 
VP8, VP9, H264/AVC, and H265/HEVC. These codecs are hardware accelerated on virtually 
every CPU or GPU, which makes them fast and energy-efficient. The codecs differ between 
implementations and hardware that runs them, but usually, they operate on 8-bit data, while 
some also support 10-bit or 12-bit. The exact inner workings of these codecs are out of 
scope for this paper.  
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Generally, these encoders will group parts of the image containing very similar pixel values 
and furthermore encode only the differences between a keyframe and subsequent frames to 
reduce bandwidth. When compressing depth images this amounts to some very noticeable 
artefacts that are known as flying pixels, especially around object edges, where invalid pixels 
(of pixel value 0) usually appear. These artefacts can be somewhat dealt with using some 
simple image processing techniques, either by simply removing them or trying to correct 
their value. 
 
On top of this, the codecs are optimised for human perception and generally try to reduce 
the image quality in places where humans won’t notice it. The encoder implementations do 
not directly operate on RGB video data but convert it to YUV. YUV is another pixel 
representation dating from the analogue TV times where both black and white TVs needed 
to be supported, as well as colour TVs. Instead of representing the colour as its components 
in Red, Green, and Blue, it represents colour as an intensity component Y and two chroma 
components U and V. The intensity alone allows for showing a grayscale image. The chroma 
components are a differential encoding of the colour components. 
 
When converting an RGB image to YUV the intensity value (Y) is computed as a weighted 
sum of R, G, B and U, V are calculated based on those weights, too. 

 
.299R .587G .114BY = 0 + 0 + 0  

.492(B )U ≈ 0 − Y  
.877(R )V ≈ 0 − Y  

 
From the equations above, one can see that this conversion favours the green components 
of the image. This is due to the fact that human visual perception is more sensitive to green. 
Additionally, YUV data is usually downsampled such that there is a Y component for every 
RGB pixel of the input image, but only a U and V component for every 2x2 pixel region of the 
input image. 
 
The complete background on colour models is out of scope for this paper. 

Depth image compression techniques 
State-of-the-art depth data compression solutions usually entail lossless compression 
schemes due to the inability of conventional lossy compression methods to accurately 
preserve real-world geometry when applied directly to depth data. However, recently some 
work has been done into lossy depth data compression. In this section, we introduce the 
most commonly used techniques.  
 
Lz4 is a generic lossless compression algorithm focussed on very fast compression and 
decompression on CPU. Intel RealSense uses the lz4 compression to reduce the filesize in 
the .bag files produced by their capturing software. Lz4 operates on a frame-by-frame basis, 
meaning it does not use temporal cohesion/inter-frame compression. Its typical compression 
ratio in this context ranges from 2x to 5x. 
 
PNG is a widely used lossless compression method targeted at image compression, 
including 16-bit grayscale images. PNG does not use temporal cohesion/inter-frame 
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compression, boasting a typical compression ratio slightly better than lz4, but much slower 
compression times. Typical compression ratios for PNG range from 2x to 9x. 
 
RVL is a lossless 16-bit depth image compression method developed by Microsoft that can 
achieve compression ratios similar to PNG, while being much faster both in compression 
and decompression stages. However, RVL makes assumptions about the original data that, 
if not met (rarely the case), may cause the method to increase the data size instead of 
reducing it, achieving compression ratios lower than 1. In the worst-case scenario, the 
compressed data size is 1.5 times larger than the raw data size. RVL does not use temporal 
cohesion/inter-frame compression and, in most cases, RVL achieves compression ratios 
similar to PNG. Typical compression ratios range from 3x to 10x. 
 
The direct mapping of 16-bit depth data to RGB, followed by compression with H265 
(RGB+H265) can be achieved by mapping the first 8-bits of the depth data into the R 
channel, the second 8-bits into the G channel, and leaving the B channel untouched. 
As shown above, when considering a 16-bit depth image we cannot convert it to RGB and 
then YUV for further compression without loss of data. This is despite the fact that RGB 
consists of three 8-bit fields - 24-bits in total and appears to `fit` into that data since feeding 
this data to any encoder, causes information to be lost when transcoding into YUV. 
Furthermore, information is also lost when an encoder compresses the data with human 
perception as the target consumer. 
 
A recently published whitepaper suggests the use of the HUE colour progression in order to 
convert depth data to RGB, allowing the use of classical image/video encoders such as 
webP (HUE+WebP). Compression ratios are reported to be high while maintaining medium 
image quality. Based on the available information we tried to reproduce the results, but fell 
well short of the reported image quality on our open data sets. A range of inconsistencies 
and lack of parameters as well lack of the reference dataset proved challenging. 
Nonetheless, we include our results and will continue the investigation for future iterations of 
this paper. The particular choice of the HUE colour space imposes a limit of 1530 unique 
values that can be encoded. For datasets where the relevant information is contained within 
a depth value interval smaller or equal to 1530, that interval is defined as the dataset’s 
region-of-interest (ROI). In the case of depth data ranges larger than 1530 values, the data 
is to be discretized to be encoded. The canonical webP compression implementation 
prevents encoding in real-time even on powerful i9 processors unless quality is sacrificed. 

  

 

 9 

 

https://www.microsoft.com/en-us/research/uploads/prod/2018/09/p100-wilson.pdf
https://dev.intelrealsense.com/docs/depth-image-compression-by-colorization-for-intel-realsense-depth-cameras
http://www.aivero.com/


 

3DQ Framework 
3DQ is an RGB-D capture, storage and streaming solution based around a proprietary, lossy 
compression algorithm for 16-bit depth data, developed by Aivero AS. It handles both RGB 
and Depth data, as many applications require both in parallel. 
 
It utilises conventional hardware acceleration featured in Intel CPU and Nvidia GPU, 
allowing for easy access and widespread availability.  
 
Inter-frame/temporal cohesion is used, allowing for compression ratios of up to 20x and 
quality ranging from acceptable to near-lossless. It is computationally efficient and allows for 
high frame rates (30+FPS) on most machines, being especially well suited for edge-like 
devices streaming RGB-D data to a central, more powerful machine. 
 

 

Aivero’s Deepcore. An edge device tailored for capturing and streaming of 3D data using 
the 3DQ based toolkit. 

3DQ operates on an ROI that currently supports up to 3072 depth units, or 3.072 meters 
when using a 1 mm/step resolution. 
 
Asides from compression, 3DQ interfaces with common 3D cameras such as the Microsoft 
Azure Kinect and Intel RealSense devices. It provides video transport across networks, as 
well as storage of depth video data. 
It can be extended using an open RGB-D interface to provide support for new data sources. 
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Experiments 
In this section, we describe the overall experimental process, including the setup, used 
datasets and experiments. 

Setup 
In order to assess how 3DQ fares against other available compression techniques, a series 
of experiments were run across multiple datasets utilising both lossless and lossy 
compression algorithms as introduced above. The chosen lossless methods consisted of 
PNG, RVL and LZ4, while the lossy methods chosen were HUE+webP, RGB+H265 and 
3DQ.  
 
Each algorithm’s compression performance was evaluated by compressing and 
decompressing each dataset using the various compression methods and, for the lossy 
ones, comparing the raw original dataset frames with the frames obtained after applying the 
different compression and decompression methods. 
 
ROI settings were not varied within a dataset but varied across the data sets. 
 
The lossless encoding methods allowed for no configuration with the exception of PNG. 
Here the fast compression level 1 and the best quality compression level 9 was tested. 
 
The lossy methods allowed for more parameters: 
 
In terms of target bitrates, both 3DQ and RGB+H265 were exercised with 5000, 10000, 
15000, 20000, 30000, 40000 and 102400kbit/s. 
 
The equivalent setting for HUE+webP was the webP encoder’s quality parameter, which was 
exercised with values 100,90,70,50,30,10,0. WebP furthermore allows for specifying a 
speed/quality tradeoff. This was left at the default value of 4. 
 
The vaapih265enc encoder of the RGB+H265 encoding was used in variable bitrate mode 
with the default quality preset of value 4. 
 
We use the peak-signal-to-noise-ratio (PSNR) between raw frames and the 
encoded/decoded frames to quantify the quality loss of the lossy compression methods. The 
compression ratio was measured to evaluate the compression performance, and the 
framerate obtained during compression and decompression to evaluate overall throughput. 
These performance metrics are explained further on in this document.  
 
All experiments were run on an Intel i9-8950HQ CPU and 32GB of RAM. 
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Datasets 
The used datasets consisted of multiple typical 3D scenes that span across different 
geometric complexities, noise conditions and overall dynamic motion of the scene. Most 
were captured using Intel RealSense cameras, but we also present results for depth video 
captured using the Azure Kinect camera from Microsoft. 
 
Technical details regarding the used datasets can be found in an Appendix to this 
whitepaper. 
 
We considered 4 datasets dubbed: 

- floating_mug 
- fishy-fish 
- plant 
- OFFICE_WFOV_UNBINNED 

 
Both floating_mug and fishy-fish have been captured using an Intel RealSense D435 camera 
with the default settings using the official RealSense-viewer tool provided by Intel, meaning 
1280x720 of image resolution with 1mm of depth step resolution at 30 FPS. 
 
The floating_mug dataset shows a metallic mug moving in front of a white background, being 
relatively simple in terms of geometric scene complexity and representing a typical example 
of a somewhat dynamic 3D scene, with a static background and moving foreground. This 
dataset’s ROI is 250 to 700 depth steps (250 to 700 mm) and most scene elements are 
within the working range of the camera, so there is a high percentage of valid data in this 
dataset.  
 
Fishy-fish shows a wooden segmented fish in front of a developer desktop setup, being 
more complex in terms of geometric scene complexity while being more dynamic than 
floating_mug due to the presence of more shadows in the scene, amounting to less valid 
pixel data. In this particular data set, the relevant information is spread out from 250 to 1600 
depth steps (250 to 1600 mm) meaning it has a bigger ROI, and more interesting data to 
encode than the other datasets. 
 
The plant dataset has also been captured using a D435 but uses a custom configuration to 
reduce the minimum distance from the camera at which valid depth data is recorded. 
Furthermore represents the depth data in steps of 0.5mm, rather than the typical 1mm. 
The plant dataset contains a rotating Chinese Money Plant, and is a very complex geometric 
scene, with many reflecting surfaces in the background that increase the overall noise, as 
well as normal foreground dynamics containing lots of shadows. This all amounts to a very 
dynamic and challenging dataset for the different compression techniques. It’s ROI is from 
300 to 700 depth steps (150 to 350 mm due to the 0.5mm resolution). 
 
The final dataset called OFFICE_WFOV_UNBINNED is one of the 4 official data samples 
released by the Microsoft Azure Kinect team. It is captured in 1024 by 1024 pixels at 15 fps. 
It portrays a static scene of a board room, with an ROI of 1000 to 2530 depth steps (1000 to 
2530 mm), being a lot less challenging than the previously described datasets, with no 
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dynamic environment whatsoever, other than the noise inherent to the camera, resulting in a 
very high percentage of valid pixel data. 
 

Point cloud renderings of a single frame of uncompressed data for each dataset 
 - click to view 3D models - 

 
plant dataset 

Truncated to 300 and 700, 0.5mm/step 
floating_mug dataset 

Truncated to 300 and 700, 1mm/step 

 
fishy-fish dataset 

Truncated to 250 and 1600, 1mm/step 

 
OFFICE_WFOV_UNBINNED dataset 

Truncated to 1000 and 2530, 1mm/step 

Performance metrics 
PSNR (peak-signal-to-noise-ratio) was used as the main accuracy performance metric as 
it uses the mean squared error between the original data and the data after 
compression/decompression, to quantify the loss of information between the two. 
   
PSNR is defined as follows. 

SNR 0log ( )P = 1 10 MSE
MAX2

I  
 

Where represents the maximum possible value allowed in the pixel representation. InAX  M I  
this case, since depth images are 16-bit, it is defined as below. 
 

AX ¹⁶ 5535  M I = 2 − 1 = 6  
represents the mean squared error between the two images being compared. It isSE  M  

defined as follows. 
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SE [I(i, ) (i, )]²M =  1
mn ∑

m−1

i=0
∑
n−1

j=0
j − I ′ j  

 
Where is the original image,  is the compressed/decompressed data, while  and are I  I ′ m n  
the image dimensions. 
 
A high PSNR value represents a low loss of information, and more accurate compression, 
while a low PSNR value represents a high amount of lost information and less accurate 
compression. Of course, this only applies to lossy compression techniques used since 
lossless compression techniques would always yield an undefined PSNR value since the 
mean squared error between the images would be zero. To put PSNR values into 
perspective, a 16-bit image with 1280x720 dimensions, with a single-pixel changed by 1 unit 
would yield a PSNR of 156 dB. Typical values for transcoded 16-bit images are 60-80 dB 
PSNR. 
 
Compression ratio was used as a performance metric for both lossy and lossless 
compression, as it illustrates the reduction in data size achieved by each compression 
algorithm. We defined compression ratio as follows. 
 

ompression Ratio C =  Original data size
Compressed data size  

 
Where is the sum of the size of every raw depth frame in the dataset andriginal data size  O  

is the sum of the sizes of the compressed depth frames.ompressed data size  C  
 
Framerate after compression and decompression was used as a way to measure the data 
throughput offered by each compression method since it provides a strong indicator for that 
method’s computational complexity. For the sake of clarity, we only measure FPS when 
evaluating the datasets that were recorded at 30 FPS (all except 
OFFICE_WFOV_UNBINNED). 
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Results 
We compare the compression ratios achieved across the ROI truncated datasets for the 
lossless compression approaches and Aivero’s 3DQ. We show example point clouds 
representing the different lossy compression results. 

Lossless compression techniques 
We evaluate the following lossless compression methods across the datasets: 

- RVL 
- PNG (compression level 1) 
- PNG (compression level 9) 
- Lz4 

Compression ratio 

 
From the graph above, one can verify that, with the exception of the plant dataset, the 
compression ratios of the lossless compression techniques are clustered around a 
compression ratio of 5x. The tested compression methods managed to compress the plant 
dataset better than the rest. In this dataset, compression ratios ranged from around 8x to 
15x. 
 
For all datasets, PNG at compression level 9 achieved the best compression ratio here with 
around ranging from 5x to 15x depending on the dataset.  

 
PNG compression level 1 and RVL achieved similar compression ratios (4x-5x) for all 
datasets but the Azure Kinect dataset, where RVL achieved a greater compression ratio 
(8x).  
 
Lz4 achieves the lowest compression ratio in all datasets. 
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Framerate 

 
 

The above graph tells us that RVL, LZ4 and PNG(1) managed to compress and decompress 
the data in realtime achieving the native 30 FPS of the datasets. 
 
PNG(9) only managed to get 7 FPS out of the dataset’s native 30 FPS, which makes it 
unsuitable for real-time applications. 

Lossy compression techniques 
We evaluate the following lossy compression methods on the same datasets: 

- 3DQ 
- HUE+webP 
- RGB+H265 

 
Note that a PSNR of a 70dB was considered the absolute lower cut-off when evaluating the 
quality as a function of bitrate for 3DQ.  
 
None of the colourisation approaches (HUE+webP and RGB+H265) achieved this on even 
their highest quality, but we are plotting their performance nonetheless. 

Compression ratio 
Across the data sets, 3DQ compression achieves compression ratios (c/r) between 7.5x and 
17.6x while maintaining PSNRs safely above 70dB for all but the highest c/r, reaching a 
maximum of 89dB. 
 
HUE + webP compression results in c/r between 7.3x and 254x, however, the highest 
PSNRs achieved is 62dB. 
 
RGB + H265 compression results in extremely high c/r between 32x and 917x, at the cost of 
quality, producing very low PSNR results, with a maximum value of 55 dB. In order to keep 
the plots readable, these values have been excluded where necessary. 
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This data set has a low percentage of invalid pixels and all pixels are valid for both 3DQ and 
HUE+webP. 
 
The floating_mug data set is being compressed with a retained quality of 88dB to 82dB 
PSNR for 3DQ, achieving a c/r of 9.4x to 17.2x. 
 
HUE+webP achieves a PSNR of 63dB to 56dB, with c/r from 8.5x to 109x. 
 
RGB+H265 achieves a PSNR of 46dB with a c/r of 388x to 917x (not shown).  
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The OFFICE_WFOV_UNBINNED is fully static except for camera noise. We encode an ROI 
that is valid for 3DQ and HUE+webP without quantisation. 
 
The OFFICE_WFOV_UNBINNED dataset is being compressed by 3DQ with a PSNR of 
89.2dB to 86.8dB, achieving a c/r of 7.5x to 16.9x. 
 
HUE+webP achieves a maximum PSNR of 51.5dB, which decreases to 49dB, c/r range from 
12x to 149x. 
 
RGB+H265 achieves a PSNR of ~41dB across the compression ratios of 32x to 71.5x. 
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The fishy-fish.bag data set is dynamic and we encode an ROI that is valid for 3DQ as well as 
HUE+webP without quantisation. 
 
Using 3DQ, fishy-fish starts at c/r 8.7x and 83dB PSNR.  
At c/r of ~10x, PSNR still remains above 80dB and drops to 65.7dB at a c/r of 17.6x. 
 
HUE+webP achieves a maximum PSNR of 51.8dB, which decreases to 46.4dB, c/r range 
from 8.5x to 108x. 
 
RGB+H265 achieves a PSNR of ~47dB across the compression ratios of 106.5x to 207.7x. 
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The plant.bag dataset is a very dynamic data set recorded at 0.5mm depth steps. At a 
near_cut of 300 and a far_cut of 700, the dataset captures data at 150mm to 300mm from 
the camera. It has many discontinuities in the depth map.  
 
Using 3DQ, the plant data set starts with a c/r of 8.4x at 89.4dB PSNR, the quality decreases 
continuously until reaching 71.3dB PSNR at 16.8x c/r.  
 
HUE+webP achieves a maximum PSNR of 57dB, which decreases to 49dB, c/r range from 
9x to 100x. 
 
RGB+H265 achieves a PSNR of 55.4dB, decreasing to 54.1dB across the compression 
ratios of 65x to 173x. 
 
Point cloud renderings of data obtained through the 3DQ codec can be found appended to 
this document. 
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Framerate 

 
As can be seen from the above graph 3DQ and RGB+H265 methods manage to achieve the 
dataset’s native 30 FPS 
 
However, HUE+WebP creates bottlenecks that limit framerate at 7 FPS. The webP 
implementation used was the canonical implementation released by Google. The speed 
preset was left at the default, 4. 
 

Discussion 
Regarding the compression ratios, lossless techniques behaved as expected, providing 
ratios that range from 4x-15x across the multiple datasets. 
 
PNG(9) proved to be the most effective at compression data but proved to be the more 
computationally complex, since it only achieved 7 FPS after compression and 
decompression, while the others proved to be able to keep up to the dataset’s native FPS. 
 
As for lossy techniques, 3DQ emerged supreme in quality, achieving very high PSNR 
results, while HUE+WebP came in at a second place and RGB+H265 showed a very poor 
performance. This is likely due to the aforementioned issues with the depth data packing 
method it uses. Furthermore, lossy compression done by the h265 encoder may quantise 
the high significant bits, introducing errors and mangling the scene geometry. The 
compression ratio is extreme at > 900x, at a severe cost of quality.  
 
The disparity between our results using HUE+WebP and the original authors’ whitepaper 
could be explained by the use of more challenging datasets by us and the absence of 
post-processing techniques in our work. We decided to not post-process the data to evaluate 
the out-of-the-box performance across a range of datasets and two cameras. In addition, the 
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choice of webP encoding already prevented real-time encoding. Adding post-processing 
would furthermore reduce encoding frame rate due to the additional computations required. 
 
3DQ, on the other hand, managed to match the dataset’s FPS in all experiments, showing 
that 3DQ, well suited for real-time applications, unlike HUE+WebP since the latter method 
struggles to run even in a modern machine like the one used in our experiments. 
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Conclusions 
 
In this work, we have compared commonly used depth compression techniques across a 
number of datasets that vary in respect to scene dynamics, depth range, noise levels and 
geometric complexity. We evaluated both lossless and lossy depth compression techniques 
and used key-metrics to draw conclusions about them. 
 
Some conclusions can be drawn from the obtained results. 
 
Firstly, lossless compression methods, due to carrying no information loss, are limited 
in terms of compression capacity as expected and shown in the previous section.  
 
The evaluated available lossy compression methods, as expected, proved extremely greedy 
in terms of compression ratio, sacrificing quality for higher compression. 
 
3DQ provided a significant reduction in data size for the majority of data sets while being 
computationally very efficient. It outperforms usual lossless depth compression methods 
RVL, PNG and LZ4 in all data sets in terms of compression ratio while being less 
computationally expensive than PNG(9). which was expected from a lossy compression 
method. However, it manages to do it while maintaining a very high image quality level as 
shown in the Results section above, especially when compared to other lossy compression 
methods that not only can not achieve the same quality level as 3DQ (HUE+WebP and 
RGB+h265), but also, in some cases, are much more computationally expensive 
(HUE+WebP). 
 
Overall, 3DQ offers a flexible depth compression solution that can be catered to specific 
applications, balancing image quality and data compression to suit application requirements, 
it being in terms of available bandwidth, storage space, and camera setup, something that 
other depth compression methods lack. 
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3DQ framework for 3D cameras 
While 3DQ is centred around the compression of RGB-D video, it is not solely a codec but a 
complete framework for capturing, compressing, streaming, storing and analysing depth data 
from one or multiple 3D cameras.  
 
The 3DQ provides a real-time, low-latency streaming solution based on RTSP, RTP, and 
webRTC using the proprietary compression technology shown above. Furthermore, 3DQ 
allows for storing compressed RGB-D video streams to disk. Compressed data can be 
accessed in C++, Rust, Python, MATLAB, NVIDIA Deepstream SDK, Samsung 
NNStreamer, GStreamer, and with common deep learning tools such as Tensorflow and 
MXnet.  
 
3DQ provides the tools for centralising the storage of any RGB-D video source. 

Common, open interface for capturing RGB-D data 
The 3DQ RGB-D compression, transport, and storage solution are camera agnostic, and 
new cameras can be added using an open-source interface. This interface is part of a set of 
open-source libraries developed by Aivero, allowing it to handle RGB-D video data in the 
widespread GStreamer media framework.  
 
The Intel RealSense series, as well as the Azure Kinect, are currently supported. Any 
developer can integrate new cameras. Aivero also provides this service on demand. 
 
Using 3DQ it is possible to deploy networked depth-based vision running on a central server 
for applications including; surveillance, autonomy, robotics and within security. 
 
 
Read more about our 3DQ depth vision pipeline: www.aivero.com 

Licensing and support 
 
The Aivero 3DQ software is available for purchase and we offer a 30 days free trial. 
 
Write us directly at sales@aivero.com or reach out to us via www.aivero.com 
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Appendix 

Datasets 

floating_mug 
 

● Format: rosbag (.bag) 
● Camera: Intel RealSense D435 
● Intel RealSense configuration: Default 
● RealSense-viewer finds incomplete video: 

yes 
● Streams: 

○ Depth 
● Data Range 

○ nearest: 259mm 
○ furthest: ~667mm 
○ step size: 1mm/step 
○ range: 408 steps 

● Invalid data due to hw constraints (too 
close): no 

● Length: 8s 
● Rosbag total size (all streams): 146.8MB 
● Number of depth frames (from rosbag 

info): 245 
● FPS: 30 
● Resolution: 1280*720 
● Dataset Download: https://bit.ly/3f9BrfE 

 

 

 

fishy-fish 
 

● Format: rosbag (.bag) 
● Camera: Intel RealSense D435 
● Intel RealSense configuration: Default 
● RealSense-viewer finds incomplete video: 

no 
● Streams: 

○ Depth 
○ Colour 

● Data Range 
○ nearest: 254mm 
○ furthest: ~1568mm 
○ step size: 1mm/step 
○ range: 1284 steps 

● Invalid data due to hw constraints (too 
close): yes 

● Length: 24s 
● Rosbag total size (all streams): 1.9GB 
● Number of depth frames (from rosbag 

info): 731 
● FPS: 30 
● Resolution: 1280*720 
● Dataset Download: https://bit.ly/3f8VATp 
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Plant 
 

● Format: rosbag (.bag) 
● Camera: Intel RealSense D435 
● Intel RealSense configuration: Custom 
● RealSense-viewer finds incomplete video: 

yes 
● Streams: 

○ Depth 
○ Infra1 

● Data Range 
○ nearest: 164mm 
○ furthest: 346mm 
○ 0.5mm/step 
○ Range: 364 steps 

● Invalid data due to hw constraints (too 
close): yes 

● Length: 11s 
● Rosbag total size (all streams): 366.4MB 
● Number of depth frames (from rosbag 

info): 347 
● FPS: 30 
● Resolution: 1280*720 
● Dataset Download: https://bit.ly/3f960SH 

 

 

 

OFFICE_WFOV_UNBINNED 
 

● Format: Matroska Video (.mkv) 
● Camera: Azure Kinect (example video) 
● Streams: 

○ Depth 
○ Infrared 
○ Colour 

● Data Range 
○ nearest: 500mm 
○ furthest: ~6139mm 
○ step size: 1mm 
○ range: 5639steps 

● Length: 10s 
● Dataset total size (all streams): 
● Number of depth frames: 153 
● FPS: 15 
● Resolution: 1024*1024 
● Dataset Download: https://bit.ly/2Yjyt2e 
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Raw bandwidth calculation 

Colour in RGB 
280 20  bytes 2764800 bytes 2764.8 KB or 2.7 MB/f rame  1 * 7 * 3 =  =   

.7MB/f rame 30 f rame/s  81 MB/s or 4860 MB/minute or 291.6 GB/hour2 *   =   

Depth as a GRAY16 or Z16 
A depth map uses a single, 16-bit channel, equivalent to two 8-bits, this will produce: 
 

280 20  1843200 bytes 1843.2 KB or 1.8 MB/f rame  1 * 7 * 2 =  =   
.8MB/f rame 30 f rame/s 54 MB/s or 3240 MB/minute or 194.4 GB/hour  1 *  =   

Point Cloud as defined by the Point Cloud Library (PCL) 
For a point cloud, each point is represented by 

● a signed 32-bit (4 byte) floating point for x,y,z each. 
● an optional colour representation, i.e. RGB packed into a 32-bit (4 byte) integer  

 
The 1280 by 720p image expressed as a point cloud will produce: 
 

280 20 2 byte  1280 20 4745600 bytes or 22.1MB/f rame  1 * 7 * 3 * 1 point +  * 7 * 4 bytepixel = 1  
3.5MB/f rame 30 f rame/s 663MB/s or 39780 MB/minute or 2387 GB/hour  1 *  =   
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Point cloud Renderings 

3DQ 

Floating_mug and OFFICE_WFOV_UNBINNED 
Single-shot point cloud renderings - click to view 3D models 

c/r from 0 to 17.2x 

 
Uncompressed, truncated 250 to 700 

 
Uncompressed, truncated 1000 to 2530 

 
c/r: 9.4x, PSNR: 88dB 

 
c/r: 7.5x, PSNR: 89.2dB 

 
c/r: 12.4x, PSNR: 87.2dB 

 
c/r: 11.8x, PSNR: 88.5dB 

 
c/r: 17.2x, PSNR: 84.6dB 

 
c/r: 16.9x, PSNR: 86.8dB 
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Fishy-fish and plant 
Single-shot point cloud renderings - click to view 3D models 

c/r from 0 to 17.6x 

 
Uncompressed, truncated 250 to 1600 

 
Uncompressed, truncated 300 to 700 

 
c/r: 8.7x, PSNR: 83dB 

 
c/r: 8.4x, PSNR: 89.4dB 

 
c/r: 12.3x, PSNR: 79.2dB c/r: 11.7x, PSNR: 81.8dB 

 
c/r: 17.6x, PSNR: 65.7dB c/r: 16.8x, PSNR: 71.3dB 
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HUE+webP 
Since all PSNR values are below 70dB we only show the highest and second-lowest setting. 
 

Fishy-fish 
Single-shot point cloud renderings 

Click descriptions for interactive renderings. 

 
c/r: 106x, PSNR: 47.24dB 

 
c/r: 207x, PSNR: 47.16dB 

 
 

floating_mug 
Single-shot point cloud renderings 

Click descriptions for interactive renderings. 
 

 
c/r: 9.9x, PSNR: 62.1dB 

 
c/r: 52x, PSNR: 61.3dB 
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plant 
Single-shot point cloud renderings 

Click descriptions for interactive renderings. 
 

 
c/r: 9.1x, PSNR: 57dB c/r: 53x, PSNR: 52.6dB 
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OFFICE_WFOV_UNBINNED 
Single-shot point cloud renderings 

Click descriptions for interactive renderings. 
 

c/r: 12.1x, PSNR: 51.5dB 
 

c/r: 88x, PSNR: 44.2dB 
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